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Abstract: This paper proposes an improved method for approximate model counting based on 
bivariate optimization. With the development of hash functions, scalable approximate model 
counting algorithms that can solve tens of thousands of variables in recent years have been 
proposed, improved and applied. However, in practical applications, there are still a large number of 
laws for the actual input data of different problems, and there is a lot of optimization space. This 
paper proposes an input variable optimization algorithm based on bivariate optimization for 
approximate model counting. It optimizes the structure of a large number of bivariate and univariate 
inputs in practical problems, and successfully improves the calculation time of the most 
approximate model counting problems without losing accuracy. 

1. Introduction 
The term "artificial intelligence" was first proposed in 1956, for more than 60 years, with it 

developed rapidly, it has become a wide-ranging cross-cutting and cutting-edge discipline. The 
intelligent planning is one of the key research fields of artificial intelligence, revolutionary advances 
in recent years, it is widely used in important areas of aerospace, industrial and so on. Among them, 
the propositional satisfiability (SAT) can effectively solve most of the planning problems, which is 
also the first to be proved as the NP problem. However, there are still many classic problems in the 
field of intelligent planning, such as Bayesian network reasoning, confidence analysis, etc., which 
need to be transformed into new problems. Then the model counting (#SAT) is generated, which can 
calculate the number of all the CNF formulas which can satisfy the assignment. In 1979, Valiant et al. 
[1] proved that the complexity of the #SAT problem is higher than the SAT problem, which is 
#P-complete. 

On the implementation front, the earliest approaches to #SAT were based on DPLL-style SAT 
solvers and could compute exact counts. One of the quickest resolution principles prove theorems in 
propositional logic based on the current method is based on DPLL, Birnbaum and Lozinkii[2] 
directly extended DPLL to solve model counting problems, thus, the CDP algorithm is proposed, 
after finding a partial solution, the number of solutions is incrementally calculated by adding 
appropriate multi-factors. Based on this algorithm, Bayardo and Pehoushek [3] use the connection 
graph to solve the problem separately by decomposing the formula into multiple sub-formulas by 
describing the relationship between the variables. Sang et al. also designed the Cachet by combining 
the DPLL algorithm with component caching, clause learning and forward-looking strategies. There 
Relsat [4] and sharpSAT [5] also use these optimization improvements. On small and medium-sized 
issues, the application of accurate model counting is very successful and effective, but when scaling 
to larger areas, the use of accurate model counting is not enough and the time is expensive - all 
index-level, so it’s not very suitable in practical applications. And in many areas, the approximate 
counting is sufficient to deal with these problems, such as probabilistic inference. The approximate 
model counting method appears in front of people, and ApproxCount[6] is proposed by Selman et al., 
it can estimate models by sampling method, which belongs to lower (or upper) bounding counters, 
similar to SearchTreeSampler [7], SE [8] anSampleSearch [9].  

2019 2nd International Conference on Mechanical Engineering, Industrial Materials and Industrial Electronics (MEIMIE 2019)

Published by CSP © 2019 the Authors 484

mailto:%7d@mails.jlu.edu.cn


  

 

 

In applications such as probabilistic reasoning, according to Karp and Luby's counting model, it is 
not possible to calculate CNF based on Monte Carlo engine, but DNF can be calculated. The 
complexity of both is a #P-complete problem. But CNF is more widely used than DNF. At the same 
time, Karp and Luby [9] also pointed out that the random approximation algorithm of the DNF 
formula is unlikely to be applicable to the CNF formula. 

So, in this paper, we use the ApproxCount, which is a new algorithm based on SampleSat that is 
almost uniformly sampled from the solution space of the propositional logic formula. We decompose 
and optimize the bivariate, and remove the redundant variables and disjunction paradigm through the 
classification method. The calculation speed is greatly improved without loss of accuracy 

The structure of this paper is as follows. In the second section, we introduce the related work, and 
in the third section, we introduce the preliminary concepts and theorems. In section 4, we list the 
results of the experiment. Finally, the conclusion is drawn in the fifth section. 

2. Related Works 
2.1 Theories 

 Approximate model counting which uses the extension rule is an alternative for exact model 
counting in practice. Based on SampleSat, ApproxCount sampled from the set of solutions of a 
propositional formula near-uniformly. As for SampleSat, it is a technique for counting models of 
Boolean satisfiability problems, and it doesn’t need uniform or near-uniform samples, but it can 
transform unguaranteed search sample into guaranteed one with good bounds. After SampleSat 
setting some variables, ApproxCount uses sample method to count models of the residual formula. 
The number of calls ApproxCount makes to SampleSat is determined by the number of variables in 
the formula under consideration [6]. To solve SAT problem, the extension rule is an available 
method, and using inclusion–exclusion principle is the core method to solve this kind of problems. 
On the other hand, ApproxCount is based on a biased random walk strategy, which has been shown 
to be an effective way to solve various and varied SAT problems. 

2.2 Conceptions 
Dealing with approximate counting and near-uniform sampling, Sipser [10] initiated and used a 

method based on hashing. And there are some others just like it using the same family of hashing 
functions, such as Hybrid-Mbound [11]. In this paper, we use an approximate model counting 
algorithm which is called ApproxMC. It uses 3-wise independent linear hashing functions from the 
Hxor (n, m, 3) family. It evolved from UniWit. The main idea of UniWit is to randomly divide the 
model spaces of a given instance into some small parts by using r-wise independent hashing 
functions. There is something make UniWit better than other hashing-based sampling algorithms. 
Back to ApproxMC, its reports are having the specified tolerance of exact count [12]. With 
packaging the core part as a function called ApproxMCCore, users could just invoke it for multiple 
times, which is easier to understand and operate. The inputs are a CNF formula and a threshold, and 
return a ε-approximate estimate of the model count of the initial CNF formula. 

And below are parts of the used theory. First, let Σ be an alphabet and R ⊆ Σ∗ × Σ∗ be a binary 
relation. R is an N P-relation if R is polynomial-time decidable, and if there exists a polynomial p (·) 
such that for every (x, y) ∈ R, we have |y| ≤ p (|x|). Let LR be the language. If R is an N P-relation, 
we may further assume that for every x ∈ LR, every witness y ∈ Rx is in {0, 1} n, where n = p 
(|x|) for some polynomial p (·). 

3. Algorithm 
For approximate model counting algorithm ApproxMC, we use 3-directional opposite linear hash 

function Hxor (n, m, 3). For an appropriate m, we randomly divide the model set of the input 
formula into sufficiently small units. After selection, test whether it is not empty and has only pivotal 

485



  

 

 

elements. If the result is negative, then choose a random hash function from Hxor (n, m + 1, 3) and 
divide the model set into two cells. Repeat the process until the unit meets the requirements. If not, 
report failure and return. 

Algorithm ( ), ,Approxmc F ε δ   
1: counter←0; C←emptylist; 
2: pivot←2 X ComputeThreshold (ε ) 
3: t←ComputelerCount (δ ); 
4: repeat; 
5:   c←ApproxMCCore (F, pivot);  
6:   counter←counter +1; 
7:  if (c≠⊥) 
8:   Addtolist (C, c); 
9: until (counter < t); 
10: finalCount←FindMedian (C); 
11: return finalcount; 
Algorithm Compute Threshold (ε ) 

1: return 1/2 213 (1 )e
e

 +  
  

Algorithm Computeltercount (δ ) 
1: return 235log (3 / )δ    
The bivariate decomposition optimization algorithm is a simultaneous decomposition of two 

variables to the CNF paradigm. Basic principle: Find a binary disjunction paradigm and ensure that 
the frequency of occurrence is high enough to assign variables (0, 0), (1, 0), (0, 1), (1, 1). For (0, 0), 
the situation must not work. For (1, 0) case decomposition: All non-existence paradigms containing 
variable one and variable two are 1, and can be deleted. All non-and variable two containing variable 
one in all disjunction paradigms are removed. (0, 1) and (1, 1) is similar with (1, 0). This resulted in 
three CNF files, each of which became smaller because of fewer variables and disjunction paradigms. 
The approximate model count is obtained for the new CNF (not necessarily calculating for the three 
CNF files, for the different data sets, there are suitable rules, with the Bivariate Decomposition 
Algorithm, it gets three CNF files, just count the available CNF files and multiple the number), and 
the number of solutions is obtained. 

4. Experiment 
This part implements the decomposition of bivariate. Compared with the approxMC implemented 

by Python and the approxMC optimized by the bivariate decomposition algorithm, the experimental 
results highlight the good performance of the bivariate decomposition optimization algorithm. The 
experimental environment is: operating system Linux (Ubuntu 18.04), CPU Intel Core i7-7700HQ 
2.8GHz, memory 16GB. The ApprocMC code (python implement) is https://github.com/ Uddipaan/ 
ApproxMC. For several different types of data sets, we performed the following tests (all test results 
were run averaging ten times): 

Table.1. Blasted Data Set (CPU Time/s) 

Problem Pre-Time New-Time 
blasted4.cnf~ 0.455 0.402 
blasted47.cnf~ 271.635 139.9 
blasted49.cnf~ 0.696 0.525 
blasted110.cnf~ 0.405 0.394 
blasted201.cnf~ 0.396 0.383 
blasted205.cnf~ 0.443 0.431 
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Table.2. Plan Data Set (CPU Time/s) 

Problem Pre-Time New-Time 
5step.cnf 0.512 0.485 
tire-1.cnf 0.809 0.564 
tire-3.cnf 1.354 1.347 

Table.3. DQMR Data Set (CPU Time/s) 

Problem Pre-Time New-Time 
or-50-10-1.cnf 134.8 95.2 
or-50-10-9.cnf 190.5 152.3 
or-20-9-10.cnf 
or-20-1-10.cnf 
or-20-10-10.cnf 

6.86 
74.3 
9.15 

5.21 
54.1 
6.73 

5. Conclusion 
In this paper, an approximate model counting optimization algorithm for bivariate decomposition 

is proposed. Combined with the existing approximate model counting method, a fast solution is 
realized. The experimental results show that the use of this algorithm improves the effectiveness of 
the existing approximate model counting method. In the future, the optimization algorithm can be 
used in a more advanced approximate model counting method, which further improves the 
calculation speed of the current approximate model counting, reduces the calculation time, and 
makes the solution speed and capability improve faster. 
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