

Optimization of Approximate Model Counting Method Based on Bivariate
Decomposition

Xuan Zhoua, Bin Zhangb, Yankun Tuc, Shuaiqi Wangd and Sihan Jiae
College of Computer Science and Technology, Jilin University, Changchun 130012, China

azhouxuan2116@mails.jlu.edu.cn, bzhangbin2116@mails.jlu.edu.cn, ctuyk2116@mails.jlu.edu.cn, dwangsq2
116@mails.jlu.edu.cn, ejiash2116@mails.jlu.edu.cn

Keywords: Approximate model counting, bivariate decomposition, #SAT

Abstract: This paper proposes an improved method for approximate model counting based on
bivariate optimization. With the development of hash functions, scalable approximate model
counting algorithms that can solve tens of thousands of variables in recent years have been
proposed, improved and applied. However, in practical applications, there are still a large number of
laws for the actual input data of different problems, and there is a lot of optimization space. This
paper proposes an input variable optimization algorithm based on bivariate optimization for
approximate model counting. It optimizes the structure of a large number of bivariate and univariate
inputs in practical problems, and successfully improves the calculation time of the most
approximate model counting problems without losing accuracy.

1. Introduction
The term "artificial intelligence" was first proposed in 1956, for more than 60 years, with it

developed rapidly, it has become a wide-ranging cross-cutting and cutting-edge discipline. The
intelligent planning is one of the key research fields of artificial intelligence, revolutionary advances
in recent years, it is widely used in important areas of aerospace, industrial and so on. Among them,
the propositional satisfiability (SAT) can effectively solve most of the planning problems, which is
also the first to be proved as the NP problem. However, there are still many classic problems in the
field of intelligent planning, such as Bayesian network reasoning, confidence analysis, etc., which
need to be transformed into new problems. Then the model counting (#SAT) is generated, which can
calculate the number of all the CNF formulas which can satisfy the assignment. In 1979, Valiant et al.
[1] proved that the complexity of the #SAT problem is higher than the SAT problem, which is
#P-complete.

On the implementation front, the earliest approaches to #SAT were based on DPLL-style SAT
solvers and could compute exact counts. One of the quickest resolution principles prove theorems in
propositional logic based on the current method is based on DPLL, Birnbaum and Lozinkii[2]
directly extended DPLL to solve model counting problems, thus, the CDP algorithm is proposed,
after finding a partial solution, the number of solutions is incrementally calculated by adding
appropriate multi-factors. Based on this algorithm, Bayardo and Pehoushek [3] use the connection
graph to solve the problem separately by decomposing the formula into multiple sub-formulas by
describing the relationship between the variables. Sang et al. also designed the Cachet by combining
the DPLL algorithm with component caching, clause learning and forward-looking strategies. There
Relsat [4] and sharpSAT [5] also use these optimization improvements. On small and medium-sized
issues, the application of accurate model counting is very successful and effective, but when scaling
to larger areas, the use of accurate model counting is not enough and the time is expensive - all
index-level, so it’s not very suitable in practical applications. And in many areas, the approximate
counting is sufficient to deal with these problems, such as probabilistic inference. The approximate
model counting method appears in front of people, and ApproxCount[6] is proposed by Selman et al.,
it can estimate models by sampling method, which belongs to lower (or upper) bounding counters,
similar to SearchTreeSampler [7], SE [8] anSampleSearch [9].

2019 2nd International Conference on Mechanical Engineering, Industrial Materials and Industrial Electronics (MEIMIE 2019)

Published by CSP © 2019 the Authors 484

mailto:%7d@mails.jlu.edu.cn

In applications such as probabilistic reasoning, according to Karp and Luby's counting model, it is
not possible to calculate CNF based on Monte Carlo engine, but DNF can be calculated. The
complexity of both is a #P-complete problem. But CNF is more widely used than DNF. At the same
time, Karp and Luby [9] also pointed out that the random approximation algorithm of the DNF
formula is unlikely to be applicable to the CNF formula.

So, in this paper, we use the ApproxCount, which is a new algorithm based on SampleSat that is
almost uniformly sampled from the solution space of the propositional logic formula. We decompose
and optimize the bivariate, and remove the redundant variables and disjunction paradigm through the
classification method. The calculation speed is greatly improved without loss of accuracy

The structure of this paper is as follows. In the second section, we introduce the related work, and
in the third section, we introduce the preliminary concepts and theorems. In section 4, we list the
results of the experiment. Finally, the conclusion is drawn in the fifth section.

2. Related Works
2.1 Theories

 Approximate model counting which uses the extension rule is an alternative for exact model
counting in practice. Based on SampleSat, ApproxCount sampled from the set of solutions of a
propositional formula near-uniformly. As for SampleSat, it is a technique for counting models of
Boolean satisfiability problems, and it doesn’t need uniform or near-uniform samples, but it can
transform unguaranteed search sample into guaranteed one with good bounds. After SampleSat
setting some variables, ApproxCount uses sample method to count models of the residual formula.
The number of calls ApproxCount makes to SampleSat is determined by the number of variables in
the formula under consideration [6]. To solve SAT problem, the extension rule is an available
method, and using inclusion–exclusion principle is the core method to solve this kind of problems.
On the other hand, ApproxCount is based on a biased random walk strategy, which has been shown
to be an effective way to solve various and varied SAT problems.

2.2 Conceptions
Dealing with approximate counting and near-uniform sampling, Sipser [10] initiated and used a

method based on hashing. And there are some others just like it using the same family of hashing
functions, such as Hybrid-Mbound [11]. In this paper, we use an approximate model counting
algorithm which is called ApproxMC. It uses 3-wise independent linear hashing functions from the
Hxor (n, m, 3) family. It evolved from UniWit. The main idea of UniWit is to randomly divide the
model spaces of a given instance into some small parts by using r-wise independent hashing
functions. There is something make UniWit better than other hashing-based sampling algorithms.
Back to ApproxMC, its reports are having the specified tolerance of exact count [12]. With
packaging the core part as a function called ApproxMCCore, users could just invoke it for multiple
times, which is easier to understand and operate. The inputs are a CNF formula and a threshold, and
return a ε-approximate estimate of the model count of the initial CNF formula.

And below are parts of the used theory. First, let Σ be an alphabet and R ⊆ Σ∗ × Σ∗ be a binary
relation. R is an N P-relation if R is polynomial-time decidable, and if there exists a polynomial p (·)
such that for every (x, y) ∈ R, we have |y| ≤ p (|x|). Let LR be the language. If R is an N P-relation,
we may further assume that for every x ∈ LR, every witness y ∈ Rx is in {0, 1} n, where n = p
(|x|) for some polynomial p (·).

3. Algorithm
For approximate model counting algorithm ApproxMC, we use 3-directional opposite linear hash

function Hxor (n, m, 3). For an appropriate m, we randomly divide the model set of the input
formula into sufficiently small units. After selection, test whether it is not empty and has only pivotal

485

elements. If the result is negative, then choose a random hash function from Hxor (n, m + 1, 3) and
divide the model set into two cells. Repeat the process until the unit meets the requirements. If not,
report failure and return.

Algorithm (), ,Approxmc F ε δ
1: counter←0; C←emptylist;
2: pivot←2 X ComputeThreshold (ε)
3: t←ComputelerCount (δ);
4: repeat;
5: c←ApproxMCCore (F, pivot);
6: counter←counter +1;
7: if (c≠⊥)
8: Addtolist (C, c);
9: until (counter < t);
10: finalCount←FindMedian (C);
11: return finalcount;
Algorithm Compute Threshold (ε)

1: return 1/2 213 (1)e
e

 +  

Algorithm Computeltercount (δ)
1: return 235log (3 /)δ  
The bivariate decomposition optimization algorithm is a simultaneous decomposition of two

variables to the CNF paradigm. Basic principle: Find a binary disjunction paradigm and ensure that
the frequency of occurrence is high enough to assign variables (0, 0), (1, 0), (0, 1), (1, 1). For (0, 0),
the situation must not work. For (1, 0) case decomposition: All non-existence paradigms containing
variable one and variable two are 1, and can be deleted. All non-and variable two containing variable
one in all disjunction paradigms are removed. (0, 1) and (1, 1) is similar with (1, 0). This resulted in
three CNF files, each of which became smaller because of fewer variables and disjunction paradigms.
The approximate model count is obtained for the new CNF (not necessarily calculating for the three
CNF files, for the different data sets, there are suitable rules, with the Bivariate Decomposition
Algorithm, it gets three CNF files, just count the available CNF files and multiple the number), and
the number of solutions is obtained.

4. Experiment
This part implements the decomposition of bivariate. Compared with the approxMC implemented

by Python and the approxMC optimized by the bivariate decomposition algorithm, the experimental
results highlight the good performance of the bivariate decomposition optimization algorithm. The
experimental environment is: operating system Linux (Ubuntu 18.04), CPU Intel Core i7-7700HQ
2.8GHz, memory 16GB. The ApprocMC code (python implement) is https://github.com/ Uddipaan/
ApproxMC. For several different types of data sets, we performed the following tests (all test results
were run averaging ten times):

Table.1. Blasted Data Set (CPU Time/s)

Problem Pre-Time New-Time
blasted4.cnf~ 0.455 0.402
blasted47.cnf~ 271.635 139.9
blasted49.cnf~ 0.696 0.525
blasted110.cnf~ 0.405 0.394
blasted201.cnf~ 0.396 0.383
blasted205.cnf~ 0.443 0.431

486

https://github.com/Uddipaan/ApproxMC
https://github.com/Uddipaan/ApproxMC

Table.2. Plan Data Set (CPU Time/s)

Problem Pre-Time New-Time
5step.cnf 0.512 0.485
tire-1.cnf 0.809 0.564
tire-3.cnf 1.354 1.347

Table.3. DQMR Data Set (CPU Time/s)

Problem Pre-Time New-Time
or-50-10-1.cnf 134.8 95.2
or-50-10-9.cnf 190.5 152.3
or-20-9-10.cnf
or-20-1-10.cnf
or-20-10-10.cnf

6.86
74.3
9.15

5.21
54.1
6.73

5. Conclusion
In this paper, an approximate model counting optimization algorithm for bivariate decomposition

is proposed. Combined with the existing approximate model counting method, a fast solution is
realized. The experimental results show that the use of this algorithm improves the effectiveness of
the existing approximate model counting method. In the future, the optimization algorithm can be
used in a more advanced approximate model counting method, which further improves the
calculation speed of the current approximate model counting, reduces the calculation time, and
makes the solution speed and capability improve faster.

References
[1] LG Valiant. The complexity of computing the permanent [J]. Theoretical Computer Science,
1979, 8 (2): 189-291.
[2] E. Birnbaum and E. L. Lozinskii. The good old Davis-Putnam procedure helps counting models.
Journal of Artificial Intelligence Research, 10 (1): 457–477, June 1999.
[3] Bayardo R J, Pehoushek J D. Counting models using connected components[C]// Seventeenth
National Conference on Artificial Intelligence & Twelfth Conference on Innovative Applications of
Artificial Intelligence. AAAI Press, 2000.
[4] R. J. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve real- world SAT
instances. In Proc. of AAAI, pages 203–208, 1997.
[5] M. Thurley. sharpSAT: counting models with advanced component caching and implicit bcp. In
Proc. of SAT, pages 424–429, 2006.
[6] Wei W and Selman B. A new approach to model counting [C]. In Proc. of 8th International
Conference on Theory and Applications of Satisfiability Testing. 2005 226-240.
[7] S. Ermon, C.P. Gomes, and B. Selman. Uniform solution sampling using a constraint solver as
an oracle. In Proc. of UAI, 2012.
[8] Gogate and R. Dechter. Samplesearch: Importance sampling in presence of determinism.
Artificial Intelligence, 175 (2): 694–729, 2011.
[9] R.M. Karp, M. Luby, and N. Madras. Monte-Carlo approximation algorithms for enumeration
problems. Journal of Algorithms, 10 (3): 429–448, 1989.
[10] M. Sipser. A complexity theoretic approach to randomness. In Proc. of STOC, pages 330–335,
1983.

487

[11] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy for
obtaining good bounds. In Proc. of AAAI, pages 54–61, 2006.
[12] Chakraborty, Supratik, K. S. Meel, and M. Y. Vardi. A Scalable Approximate Model Counter.
Principles and Practice of Constraint Programming. Springer Berlin Heidelberg, 2013.

488

	1. Introduction
	2. Related Works
	3. Algorithm
	4. Experiment
	5. Conclusion
	References

